
 

 8 

Legend for Identifiers 
 
Unique Numbering System for the 2016 K–12 Computer Science Learning Standards  
To help organize and track each individual standard, a unique identifier was developed. An example 
appears below: 
 

Grades Identifier Computer Science  
K–12 Learning Standard 

Framework 
Concept 

Framework 
Practice 

9–10 3A-A-2-1 Design and develop a software artifact 
working in a team. 

Algorithms and 
Programming Collaborating 

 
Use the following legend to interpret the unique identifier for each Computer Science K–12 Learning 
Standard: 
 

The identifier code corresponds to: 
Level – Concept – Practice – Identifier 

Identifier Code Key 

Lev
els 

1A Grades K–2  
1B Grades 3–5  
2 Grades 6–8  

3A Grades 9–10 
3B Grades 11–12  

Con
cep

ts 

A Algorithms and Programming  
C Computing Systems 
D Data and Analysis 
I Impacts of Computing 
N Networks and the Internet 

Pra
ctic

es 

1 Fostering an Inclusive Computing Culture  
2 Collaborating  
3 Recognizing and Defining Computational Problems  
4 Developing and Using Abstractions  
5 Creating Computational Artifacts  
6 Testing and Refining  
7 Communicating about Computing  

Figure 4: Standards Identifier Code - Interim Computer Science Teachers Association K–12 Computer Science Standards (2016) Retrieved from http://www.csteachers.org 
 



 

 17 

 11–12 Level 3B 
3B-A-2-1  Use version control systems, integrated development environments (IDEs), and 

collaborating tools and practices (code documentation) in a group software project.  
3B-A-2-2  Demonstrate software life cycle processes (e.g., spiral, waterfall) by participating on 

software project teams (e.g., community service project with real-world clients).  
3B-A-7-3  Modify an existing program to add additional functionality and discuss intended and 

unintended implications (e.g., breaking other functionality).   

3B-A-7-4  
Explain security issues that might lead to compromised computer programs (e.g., 
circular references, ambiguous program calls, lack of error checking and field size 
checking).   

3B-A-7-5  
Compare a variety of programming languages and identify features that make them 
useful for solving different types of problems and developing different kinds of systems 
(e.g., declarative, logic, parallel, functional, compiled, interpreted, real-time).   

3B-A-7-6  Describe how artificial intelligence drives many software and physical systems (e.g., 
autonomous robots, computer vision, pattern recognition, text analysis).  

3B-A-5-7  Decompose a problem by creating new data types, functions, or classes.  
3B-A-5-8  Demonstrate code reuse by creating programming solutions using libraries and APIs 

(e.g., graphics libraries, maps API).  
3B-A-5-9  Implement an AI algorithm to play a game against a human opponent or solve a 

problem.  
3B-A-5-10  Develop programs for multiple computing platforms (e.g., computer desktop, web, 

mobile).  
3B-A-4-11  Critically analyze classic algorithms (e.g., sorting, searching) and use in different 

contexts, adapting as appropriate.  
3B-A-4-12  Evaluate algorithms (e.g., sorting, searching) in terms of their efficiency, correctness, 

and clarity.  
3B-A-4-13  Compare and contrast fundamental data structures and their uses (e.g., lists, maps, 

arrays, stacks, queues, trees, graphs).  

3B-A-4-14  
Discuss issues that arise when breaking large-scale problems down into parts that must 
be processed simultaneously on separate systems (e.g., cloud computing, parallelization, 
concurrency). 

3B-A-3-15  Provide examples of computationally solvable problems and difficult-to-solve problems.  
3B-A-3-16  Explain the value of heuristic algorithms (discovery methods) to approximating solutions 

for difficult-to-solve computational problems.   



 

 18 

 11–12 Level 3B 
3B-A-3-17  Decompose a large-scale computational problem by identifying generalizable patterns 

and applying them in a solution.  
3B-A-3-18  Illustrate the flow of execution of a recursive algorithm.  
3B-A-3-19  Describe how parallel processing can be used to solve large problems (e.g., SETI at 

Home, FoldIt).  
3B-A-3-20  Develop and use a series of test cases to verify that a program performs according to its 

design specifications.   
3B-A-6-21  Evaluate key qualities of a program (e.g., correctness, usability, readability, efficiency, 

portability, scalability) through a process such as a code review.  
3B-C-7-22  Explain the role of operating systems (e.g., how programs are stored in memory, how 

data is organized/retrieved, how processes are managed and multi-tasked).   

3B-C-7-23  
Identify the functionality of various categories of hardware components and 
communication between them (e.g., physical layers, logic gates, chips, input and output 
devices).  

3B-D-4-24  Use data analysis to identify significant patterns in complex systems (e.g., take existing 
data sets and make sense of them).   

3B-D-4-25  Discuss how data sequences (e.g., binary, hexadecimal, octal) can be interpreted in a 
variety of forms (e.g., instructions, numbers, text, sound, image).  

3B-D-4-26  Evaluate the ability of models and simulations to formulate, refine, and test hypotheses.   
3B-D-4-27  Identify mathematical and computational patterns through modeling and simulation 

(e.g., regression, Runge-Kutta, queueing theory, discrete event simulation).   

3B-D-1-28  
Use various data collection techniques for different types of problems (e.g., mobile 
device, GPS, user surveys, embedded system sensors, open data sets, social media data 
sets).  

3B-D-3-29  Explore security policies by implementing and comparing encryption and authentication 
strategies (e.g., secure coding, safeguarding keys).  

3B-I-7-30  Develop criteria to evaluate the beneficial and harmful effects of computing innovations 
on people and society. 

3B-I-5-31  
Select, observe, and contribute to global Collaborating in the development of a 
computational artifact (e.g., contribute the resolution of a bug in an open-source project 
hosted on GitHub). 



 

 19 

 11–12 Level 3B 

3B-I-1-32  
Design and implement a study that evaluates or predicts how computation has 
revolutionized an aspect of our culture and how it might evolve (e.g., education, 
healthcare, art/entertainment, energy). 

3B-I-1-33 Debate laws and regulations that impact the development and use of software. 
3B-I-1-34  Evaluate the impact of equity, access, and influence on the distribution of computing 

resources in a global society.  
3B-N-4-35 Simulate and discuss the issues (e.g., bandwidth, load, delay, topology) that impact 

network functionality (e.g., use free network simulators). 
 


