Legend for Identifiers

Unique Numbering System for the 2016 K-12 Computer Science Learning Standards
To help organize and track each individual standard, a unique identifier was developed. An example

appears below:

Design and develop a software artifact

working in a team.

Collaborating

Use the following legend to interpret the unique identifier for each Computer Science K—12 Learning

Standard:

Identifier Code Key
1A Grades K-2
" 1B Grades 3-5
% 2 Grades 6-8
= 3A Grades 9-10
3B Grades 11-12
A Algorithms and Programming
‘3 C Computing Systems
§ D Data and Analysis
S I Impacts of Computing
N Networks and the Internet
1 Fostering an Inclusive Computing Culture
2 Collaborating
4 3 Recognizing and Defining Computational Problems
'*§ 4 Developing and Using Abstractions
E 5 Creating Computational Artifacts
6 Testing and Refining
7 Communicating about Computing

Figure 4: Standards Identifier Code - Interim Computer Science Teachers Association K—12 Computer Science Standards (2016)

Retrieved from http://www.csteachers.org




11-12 Level 3B

3B-A2-1 Use version control systems, integrated development environments (IDEs), and
collaborating tools and practices (code documentation) in a group software project.

3B-A2-D Demonstrate software life cycle processes (e.g., spiral, waterfall) by participating on
software project teams (e.g., community service project with real-world clients).

3B-A7-3 Modify an existing program to add additional functionality and discuss intended and
unintended implications (e.g., breaking other functionality).
Explain security issues that might lead to compromised computer programs (e.g.,

3B-A-7-4 circular references, ambiguous program calls, lack of error checking and field size
checking).
Compare a variety of programming languages and identify features that make them

3B-A-7-5 useful for solving different types of problems and developing different kinds of systems
(e.g., declarative, logic, parallel, functional, compiled, interpreted, real-time).

3BATE Describe how artificial intelligence drives many software and physical systems (e.g.,
autonomous robots, computer vision, pattern recognition, text analysis).

3B-A-5-7 Decompose a problem by creating new data types, functions, or classes.

3B-A-5-8 Demonstrate code reuse by creating programming solutions using libraries and APls
(e.g., graphics libraries, maps API).

3B-A5.9 Implement an Al algorithm to play a game against a human opponent or solve a
problem.

3B-A5-10 Develop programs for multiple computing platforms (e.g., computer desktop, web,
mobile).

3BA411 Critically analyze classic algorithms (e.g., sorting, searching) and use in different
contexts, adapting as appropriate.

3BA412 Evaluate algorithms (e.g., sorting, searching) in terms of their efficiency, correctness,
and clarity.

3BA413 Compare and contrast fundamental data structures and their uses (e.g., lists, maps,
arrays, stacks, queues, trees, graphs).
Discuss issues that arise when breaking large-scale problems down into parts that must

3B-A-4-14 be processed simultaneously on separate systems (e.g., cloud computing, parallelization,
concurrency).

3B-A-3-15 Provide examples of computationally solvable problems and difficult-to-solve problems.

3BA-3-16 Explain the value of heuristic algorithms (discovery methods) to approximating solutions

for difficult-to-solve computational problems.

~




11-12 Level 3B

3B-A-3-17 Decompose a large-scale computational problem by identifying generalizable patterns
and applying them in a solution.

3B-A-3-18 Illustrate the flow of execution of a recursive algorithm.

3BA-3.19 Describe how parallel processing can be used to solve large problems (e.g., SETI at
Home, Foldlt).

3B-A-3-20 Develop and use a series of test cases to verify that a program performs according to its
design specifications.

3B-A621 Evaluate key qualities of a program (e.g., correctness, usability, readability, efficiency,
portability, scalability) through a process such as a code review.

3B.C.7-22 Explain the role of operating systems (e.g., how programs are stored in memory, how
data is organized/retrieved, how processes are managed and multi-tasked).
Identify the functionality of various categories of hardware components and

3B-C-7-23 communication between them (e.g., physical layers, logic gates, chips, input and output
devices).

3B.D-4.24 Use data analysis to identify significant patterns in complex systems (e.g., take existing
data sets and make sense of them).

3B-D-4-25 Discuss how data sequences (e.g., binary, hexadecimal, octal) can be interpreted in a
variety of forms (e.g., instructions, numbers, text, sound, image).

3B-D-4-26 Evaluate the ability of models and simulations to formulate, refine, and test hypotheses.

3B-D-4-27 Identify mathematical and computational patterns through modeling and simulation
(e.g., regression, Runge-Kutta, queueing theory, discrete event simulation).
Use various data collection techniques for different types of problems (e.g., mobile

3B-D-1-28 device, GPS, user surveys, embedded system sensors, open data sets, social media data
sets).

3B-D-3-29 Explore security policies by implementing and comparing encryption and authentication
strategies (e.g., secure coding, safeguarding keys).

3B-1-7-30 Develop criteria to evaluate the beneficial and harmful effects of computing innovations
on people and society.
Select, observe, and contribute to global Collaborating in the development of a

3B-I-5-31 computational artifact (e.g., contribute the resolution of a bug in an open-source project

hosted on GitHub).

~
—




11-12 Level 3B
Design and implement a study that evaluates or predicts how computation has
3B-I-1-32 revolutionized an aspect of our culture and how it might evolve (e.g., education,
healthcare, art/entertainment, energy).
3B-I-1-33 Debate laws and regulations that impact the development and use of software.
3B-1-1-34 Evaluate the impact of equity, access, and influence on the distribution of computing
resources in a global society.
3B-N-4-35 Simulate and discuss the issues (e.g., bandwidth, load, delay, topology) that impact

network functionality (e.g., use free network simulators).

~
pe]
—




